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REDUCTION FOR STOCHASTIC BIOCHEMICAL REACTION
NETWORKS WITH MULTISCALE CONSERVATIONS∗

JAE KYOUNG KIM† , GRZEGORZ A. REMPALA‡ , AND HYE-WON KANG§

Abstract. Biochemical reaction networks frequently consist of species evolving on multiple
timescales. Stochastic simulations of such networks are often computationally challenging and
therefore various methods have been developed to obtain sensible stochastic approximations on the
timescale of interest. One of the rigorous and popular approaches is the multiscale approximation
method for continuous time Markov processes. In this approach, by scaling species abundances and
reaction rates, a family of processes parameterized by a scaling parameter is defined. The limit-
ing process of this family is then used to approximate the original process. However, we find that
such approximations become inaccurate when combinations of species with disparate abundances
either constitute conservation laws or form virtual slow auxiliary species. To obtain more accurate
approximation in such cases, we propose here an appropriate modification of the original method.
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multiscale approximation, singular perturbation theory, timescale separation
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1. Introduction. Biochemical reaction networks frequently evolve with disparate
timescales. The simulations of the stochastic system describing such multiscale bio-
chemical reaction networks are extremely slow because the computation is predom-
inantly spent on simulating fast reactions [10, 12, 21, 50]. One approach to resolve
this problem is using disparate timescales among species [14, 51, 58]. Fast species reg-
ulated by fast reactions will quickly equilibrate to a quasi-steady-state (QSS), while
other species (slow species) will continue to evolve slowly on a different timescale (slow
timescale). Thus, on the slow timescale, the fast species are assumed in QSS, which
is determined by the evolution of slow species. By replacing the fast species with
their QSS, we can derive the reduced stochastic system depending solely on the slow
species. Such a reduced system accurately approximates the slow timescale dynamics
of the original full stochastic system with a much lower computational cost.

However, in most systems with nonlinear reactions, deriving the exact QSS is
difficult, and thus various approximations for QSS have been proposed [6, 8, 11, 13,
25, 28, 48, 49, 50, 53, 54, 59]. Since typically the accuracy of such approximations
has been investigated numerically due to the lack of analytical tools, their validity is
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difficult to fully establish. Indeed, recent studies have shown the potential inaccuracy
of a popular approach based on a deterministically derived QSS (e.g., Michaelis–
Menten function) [1, 9, 40, 41, 55, 56]. These results indicate the need for justification
of the QSS approximation using theoretical analysis [23, 32, 47].

One method allowing for a rigorous analysis is the multiscale approximation
method, which was first introduced in [5] and further developed and systemized in
[34]. The method is based on the idea of scaling species abundances, reaction rate
constants, and time with a common scaling parameter to define a family of pro-
cesses indexed by the scaling parameter. The limit of the family is then used to
approximate the original process on the timescale of interest. This multiscale ap-
proximation method has provided accurate approximate reduced models for various
multiscale stochastic biochemical reaction networks, including the complex model of
the heat shock response in E. coli [33, 34, 35]. The multiscale approximation method
allows for a rigorous analysis of the accuracy of the reduced model using theorems
in stochastic analysis such as the law of large numbers and the martingale central
limiting theorem [35]. Recently, this method was extended to study the chemical
reaction-diffusion networks [52]. The scaling method developed for the multiscale
approximation has also been used to derive various tools to study chemical reaction
networks having a multiscale nature, such as hybrid approximation and its simulation
algorithms [19, 20, 29], parameter sensitivity analysis [26, 27], and error analysis for
stochastic numerical schemes [3, 4].

The current paper proposes the modified multiscale approximation method, which
leads to accurate approximations for a broader class of multiscale stochastic biochem-
ical reaction networks than the original method. Even though we concentrate, for
the sake of simplicity, on two specific examples of networks, our proposed approach
is seen to apply more broadly. The paper is organized as follows. In section 2, we
briefly review the procedure of the original stochastic multiscale approximation using
an example of the Michaelis–Menten enzyme kinetics. We also point out that the
resulting reduced model does not accurately approximate the original model if the
system has conservation laws involving species whose abundances are on disparate
scales. To improve the accuracy, we propose a modification for the multiscale approx-
imation method in section 3. In section 4, using an example of the genetic oscillatory
system, we show that the stochastic multiscale approximation leads to an inaccurate
approximation if the approximation uses a slow auxiliary variable, the combination
of fast species whose abundances are on disparate scales. On the other hand, for such
system, our modified multiscale approximation method leads to an accurate approxi-
mation. In section 5, we summarize our results and discuss future work. The details
of our analysis described in the main text are provided in the appendix.

2. Stochastic multiscale approximation method. In this section, we review
the multiscale approximation method [5, 33, 34] and describe its limitations under
conservation laws involving species with disparate molecular abundances. Consider a
Michaelis–Menten enzyme kinetics with a product converting back to substrate [1, 40].
This system consists of four reactions as described in Figure 1(a) and Table 1: a free
enzyme (E) reversibly binds with a substrate (S) to form a complex (C) and then the
complex irreversibly dissociates into a product (P ) and a free enzyme. The product
is assumed to be converted back to the substrate so that the substrate concentration
is nonzero at the steady state. Propensity functions corresponding to these four
reactions are derived based on the mass action kinetics by defining Xi(t) be the
abundance of the ith species at time t (Table 1).
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Fig. 1. Michaelis–Menten kinetics with a convertible product. (a) The diagram of the biochem-
ical reaction network. (b) The simulations of ordinary differential equations, which are large volume
limits of stochastic systems (2). When converting stochastic propensity functions to macroscopic
reaction rates, volume V = 1/nM is assumed. Here, S(0) = C(0) = 0, E(0) = ET (40nM), and
P (0) = ST (80nM). For N0 = 10, the scaling exponents for species abundance (i.e., αi) are set to 0
for S and 1 for others at the steady state.

Table 1
Reactions and propensity functions of the Michaelis–Menten kinetics with a convertible prod-

uct. κ′i are stochastic reaction rate constants with units in the number of molecules rather than
concentrations. Xi(t) is the number of molecules of the ith species at time t.

Reactions Propensity functions

S + E
κ′1−−→ C λ′1(X) := κ′1XSXE

C
κ′2−−→ S + E λ′2(X) := κ′2XC

C
κ′3−−→ P + E λ′3(X) := κ′3XC

P
κ′4−−→ S λ′4(X) := κ′4XP

Let Rtk(·) be a counting process for the number of occurrences of the kth reaction
up to time t defined as

(1) Rtk (λ′k(X)) := Yk

(∫ t

0
λ′k(X(s))ds

)
,

where Yk are independent unit Poisson processes, and λ′k(X) are the propensity func-
tions of the kth reaction given in Table 1. With these counting processes, we can
derive the system of stochastic equations describing the state of Xi(t):

XS(t) = XS(0) +Rt2(λ′2(X)) +Rt4(λ′4(X))−Rt1(λ′1(X)),

XE(t) = XE(0) +Rt2(λ′2(X)) +Rt3(λ′3(X))−Rt1(λ′1(X)),

XC(t) = XC(0) +Rt1(λ′1(X))−Rt2(λ′2(X))−Rt3(λ′3(X)),

XP (t) = XP (0) +Rt3(λ′3(X))−Rt4(λ′4(X)).

(2)

In this system, the total numbers of molecules of the substrate (XST
) and the enzyme

(XET
) are conserved over time:

XST
:= XS(t) +XC(t) +XP (t) = XS(0) +XC(0) +XP (0),(3)

XET
:= XC(t) +XE(t) = XC(0) +XE(0).(4)

In the following subsections, we briefly describe how to derive the reduced system ap-
proximating the slow-scale dynamics of (2) with the multiscale approximation method
[5, 33, 34].
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Table 2
Normalized reaction rate constants. The values of reaction rate constants are adopted from [40].

Name Description Values & normalized rates (κi)

κ′1 Binding rate constant for E to S 0.017/s = 10−2 × 1.7/s =: N−2
0 κ1

κ′2 Unbinding rate constant for C 0.03/s = 10−2 × 3/s =: N−2
0 κ2

κ′3 Production rate constant for P 0.0016/s = 10−3 × 1.6/s =: N−3
0 κ3

κ′4 Conversion rate constant for P to S 0.0007/s = 10−3 × 0.7/s =: N−3
0 κ4

2.1. Deriving the normalized system. The first step of the multiscale ap-
proximation method is scaling reaction rate constants, species abundances, and time
via a common scaling parameter (N0) to identify the timescale of each species. Here,
we choose the value of the scaling parameter as N0 = 10 to transform the original
reaction rate constants (κ′i) to the normalized constants (κi) with κ′i = Nβi

0 κi. The
scaling exponents (βi) are chosen so that the normalized reaction rate constants (κi)
are of order 1 as presented in Table 2.

Similarly, the scaling exponents (αi) are chosen so that Xi(t)/Nαi
0 becomes of

order 1. Since we are interested in the slow-scale dynamics of the system, we determine
αi based on the steady state values of the ordinary differential equations, which are
the large volume limit (i.e., thermodynamic limit) of the stochastic system [22, 43]
(Figure 1(b)):

αS = 0, αE = 1, αC = 1, αP = 1.

Using these scaling exponents, we define the normalized species abundance on the
times of order N3

0 as

ZN0
i (t) :=

Xi(tN0
3)

Nαi
0

(5)

since we are interested in the dynamics at the timescale of order N3
0 (Figure 1(b)).

Then, we derive the counting processes in terms of the normalized rate constants (κi)
and the normalized variables (ZN0

i (t)) on the timescale of order N3
0 . For instance, the

counting process for the first reaction becomes

Y1

(∫ N3
0 t

0
λ′1(X(s))ds

)
= Y1

(∫ N3
0 t

0
κ′1XS(s)XE(s)ds

)

= Y1

(∫ t

0

(
N0
−2κ1

)
ZN0
S (u)

(
N0Z

N0
E (u)

)
N3

0 du

)
=: Y1

(∫ t

0
N0

2λ1(ZN0(u))du
)
,

(6)

where ZN0 is the vector whose ith component is ZN0
i . Here in the second equality,

we apply the change of variable s = N3
0u, and in the third equality, we define a

normalized propensity function as λ1(ZN0)(u) := κ1Z
N0
S (u)ZN0

E (u). In a similar way,
we derive the counting processes for other reactions in terms of normalized propensity
functions (see Table 3). Since λi(ZN0) is of order 1, we can easily recognize the order
of the counting processes in Table 3. The higher order indicates the faster counting
process.

By substituting the counting processes in Table 3 into the original stochastic
system (2), we obtain the normalized stochastic system for ZN0(t). In this normal-
ized system, we now replace the fixed scaling parameter value N0 with a varying
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Table 3
Counting processes for the normalized system. Here, the scaling exponents, αS = 0, αE =

1, αC = 1, αP = 1, are used to derive the normalized species abundance ZN0
i as described in (5), and

the scaling exponents, β1 = −2, β2 = −2, β3 = −3, β4 = −3 are used to derive normalized reaction
rates as described in Table 2. λi(ZN0 ) are normalized propensity functions for ith reactions, which
are order of 1, and thus the orders of reaction rates of R1, R2, R3, and R4 are 2, 2, 1, and 1,
respectively.

Reaction Counting processes

S + E
N0
−2κ1−−−−−−→ C Rt1

(
N0

2λ1(ZN0 )
)

:= Y1

(∫ t
0 N0

2κ1Z
N0
S (u)ZN0

E (u)du
)

C
N0
−2κ2−−−−−−→ S + E Rt2

(
N0

2λ2(ZN0 )
)

:= Y2

(∫ t
0 N0

2κ2Z
N0
C (u)du

)
C

N0
−3κ3−−−−−−→ P + E Rt3

(
N0

1λ3(ZN0 )
)

:= Y3

(∫ t
0 N0

1κ3Z
N0
C (u)du

)
P

N0
−3κ4−−−−−−→ S Rt4

(
N0

1λ4(ZN0 )
)

:= Y4

(∫ t
0 N0

1κ4Z
N0
P (u)du

)

parameter N to derive a family of vector-valued processes {ZN (t)} depending on the
parameter N :

ZNS (t) = ZNS (0) +Rt2
(
N2λ2(ZN )

)
+Rt4

(
Nλ4(ZN )

)
−Rt1

(
N2λ1(ZN )

)
,

ZNE (t) = ZNE (0) +N−1 (Rt2 (N2λ2(ZN )
)

+Rt3
(
Nλ3(ZN )

)
−Rt1

(
N2λ1(ZN )

))
,

ZNC (t) = ZNC (0) +N−1 (Rt1 (N2λ1(ZN )
)
−Rt2

(
N2λ2(ZN )

)
−Rt3

(
Nλ3(ZN )

))
,

ZNP (t) = ZNP (0) +N−1 (Rt3 (Nλ3(ZN )
)
−Rt4

(
Nλ4(ZN )

))
.

(7)

The initial conditions for the family of processes {ZN (t)} are defined so that ZNi (0)→
ZN0
i (0) as N →∞:

ZNS (0) = ZN0
S (0) = XS(0),

ZNi (0) =
1
N

⌊
NZN0

i (0)
⌋

=
1
N

⌊
N

N0
Xi(0)

⌋
, i = E,C, P.

(8)

The floor function (b c) is used so that the initial conditions of unnormalized species
NαiZNi (0) have integer values (see [34] for details). In the following, we will find the
limit of this family of processes as N → ∞ and use it to approximate the slow-scale
dynamics of the stochastic system given in (2). Note that this approach is analogous
to a singular perturbation approach based on Tikhonov’s theorem [24, 37, 57], which
reduces the multiscale deterministic systems by setting a small scaling parameter as
0 in the limit.

2.2. Balance equations. In the family of processes {ZN (t)} given in (7), the
order of the maximum production rates for species S is N2 due to the term Rt2(
N2λ2(ZN )

)
since λi(ZN ) is of order 1. The order of the maximum consumption

rate is also N2 due to Rt1
(
N2λ1(ZN )

)
. That is, both maximum production and

consumption rates of species S have the same scaling exponents as 2. If the maximum
exponent of the production rates is larger than that of the consumption rates, the
normalized abundance of the species asymptotically goes to infinity as N →∞. In the
opposite case, it asymptotically goes to zero in the limit. Thus, when the maximum
exponents of production and consumption rates are equal, which is known as the
“balance equation,” the limit of normalized species can be nondegenerate [33]. In the
case when there is a subset of species which do not satisfy the balance equations, their
limit will be nondegenerate only for a certain time period, which gives the restriction

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

10
.7

6.
10

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC REDUCTION WITH MULTISCALE CONSERVATIONS 1381

on the choice of the timescale (see [33, 34] for further details). In our example in (7),
all species and their linear combinations satisfy the balance equations. We also show
that a nondegenerate limit of {ZN (t)} exists (see Appendix B for details).

2.3. Deriving the average of fast variables and limiting model. For the
species P in (7), the maximum scaling exponent of the reaction rates and the scaling
exponent of species abundance (i.e., αP ) are all 1. This indicates that the number
of molecules of P and its change by reactions are of the same order on the current
timescale, and therefore the current slow timescale is a natural timescale for P . In
other words, P is a slow species in terms of the singular perturbation theory [37].
For other species, αi is less than the maximum scaling exponents of their reaction
rates. Hence, the abundance of these species would fluctuate rapidly by reactions
on the current slow timescale, indicating that they are fast species. Due to the
rapid fluctuation, these fast species do not have a functional limit. Instead, they
are averaged out in the limit as N → ∞ [5, 34, 46]. We now describe how to derive
the averaged values of fast species in the limit.

Using two conservation constraints of the systems (7),

ZNST
: =

1
N
ZNS (t) + ZNC (t) + ZNP (t) =

1
N
ZNS (0) + ZNC (0) + ZNP (0),(9)

ZNET
: = ZNE (t) + ZNC (t) = ZNE (0) + ZNC (0),(10)

we can simplify (7) as

ZNS (t) = ZNS (0) +Rt2
(
N2κ2Z

N
C

)
+Rt4

(
Nκ4Z

N
P

)
−Rt1

(
N2κ1Z

N
S Z

N
E

)
,(11)

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3Z

N
C

)
−N−1Rt4

(
Nκ4Z

N
P

)
.(12)

Equations (11)–(12) are closed since ZNC (t) and ZNE (t) are determined by ZNS (t) and
ZNP (t) from the conservations in (9)–(10) as follows:

ZNC (t) = ZNST
− 1
N
ZNS (t)− ZNP (t),(13)

ZNE (t) = ZNET
− ZNC (t) = ZNET

− ZNST
+

1
N
ZNS (t) + ZNP (t).(14)

Because the maximum order of the reaction rate (N2) in (11) is greater than NαS =
N0, species S is rapidly fluctuating and thus its behavior in (12)–(13) is averaged out
as N → ∞. To derive the averaged value, we use the law of large numbers for the
Poisson process:

(15) lim
N→∞

sup
x≤x0

∣∣∣∣Y (Nαx)
Nα

− x
∣∣∣∣ = 0,

where α > 0, x0 > 0, and Y is a unit Poisson process. From (15), it follows that

Rt1
(
N2κ1Z

N
S Z

N
E

)
N2 =

Y1

(∫ t
0 N

2κ1Z
N
S (u)

(
ZNET

− ZNST
+ 1

NZ
N
S (u) + ZNP (u)

)
du
)

N2

has the same limit as the following integral:∫ t

0
κ1Z

N
S (u)

(
ZNET

− ZNST
+

1
N
ZNS (u) + ZNP (u)

)
du.
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Applying this result after dividing (11) by N2, we get∫ t

0

(
κ2Z

N
C (u)− κ1Z

N
S (u)

(
ZNET

− ZNST
+

1
N
ZNS (u) + ZNP (u)

))
du→ 0

as N → ∞ since ZNS (t)/N2 and Rt4
(
Nκ4Z

N
P

)
/N2 go to zero. As ZNS (t)/N → 0 in

the limit, we get∫ t

0

(
κ2Z

N
C (u)− κ1Z

N
S (u)

(
ZNET

− ZNST
+ ZNP (u)

))
du

=
∫ t

0

(
κ2
(
ZNST
− ZNP (u)

)
− κ1Z

N
S (u)

(
ZNET

− ZNST
+ ZNP (u)

))
du→ 0.

(16)

Setting the integrand of (16) to zero in the limit and defining ZP := limN→∞ ZNP , we
can derive the averaged value of the fast species (Z̄S(t)) in terms of the slow species
(ZP (t)) in the limit (see Appendix A for the detailed derivation):

Z̄S(t) =
κ2 (ZST

− ZP (t))
κ1 (ZET

− ZST
+ ZP (t))

,(17)

where

ZST
= lim
N→∞

ZNST
=
XC(0)
N0

+
XP (0)
N0

,(18)

ZET
= lim
N→∞

ZNET
=
XE(0)
N0

+
XC(0)
N0

.(19)

Since Z̄S(s)/N → 0 as N →∞, the averaged value of another fast species (C) in
the limit is also derived from (13) as

(20) Z̄C(s) = ZST
− ZP (s).

Using this averaged value in the limit and the law of large numbers given in (15), we
get the limiting equation of (12):

(21) ZP (t) = ZP (0) +
∫ t

0

(
κ3Z̄C(s)− κ4ZP (s)

)
ds.

Note that this reduced system solely depends on ZP since Z̄C(s) is determined by
ZP (s) from (20). Following the original multiscale approximation method [5, 34],
we used ZP (t) of the limiting model to approximate XP (t) after unnormalizing the
species abundance and rescaling back the time as

(22) XP (t) ≈ N0ZP (N−3
0 t).

The advantage of this approximation is that its error can be estimated using the
law of large numbers and the martingale central limiting theorem [18, 35, 44, 45].
In our case, we get XP (t) = N0ZP (N−3

0 t) + O(N1/2
0 ) since it has been known that

1
N0
XP (N3

0 t) − ZP (t) = O(N−1/2
0 ) [35]. Note that XN − ZN = O(N−β) for some

β > 0 means that Nβ(XN (t) − ZN (t)) ⇒ U(t) as N → ∞, where U(t) = O(1)
(stochastically bounded). Here, ⇒ indicates convergence in distribution (i.e., weak
convergence).
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However, the approximation (22) obtained from the deterministic limiting model
(21) cannot capture the fluctuation of XP (t). One natural way to resolve this issue is
to replace the deterministic reaction terms in (21) by random jump processes with the
corresponding propensity functions, which leads to the following stochastic process:

ZP (t) = ZN0
P (0) +N0

−1Rt3 (N0κ3ZC)−N−1
0 Rt4 (N0κ4ZP ) ,(23)

where

ZC(t) = ZST
− ZP (t).(24)

Note that this stochastic equation is the same as the original one for ZN0
P in (12)

except for ZC(t), which now solely depends on the slow variable ZP (t) as Z̄C(s)
does in (20). Similarly to (22), we can use ZP (t) in (23) to approximate XP (t), as
XP (t) ≈ N0ZP (N−3

0 t).
In Appendix C, we show that

XP (t) ≈ N0ZP (N−3
0 t) + E(N−3

0 t),(25)

E(t) =
∫ t

0

√
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)| dW (s)(26)

+
∫ t

0

{
κ3
(
XS(0)− Z̄S(s)− E(s)

)
− κ4E(s)

}
ds,

where W is a standard Brownian motion. Importantly, XP (t) = N0ZP (N−3
0 t) +O(1)

because E(t) = O(1), indicating that the new approximation with N0ZP (N−3
0 t) is

more accurate than the deterministic limit in (22). However, the new approximation
with N0ZP (N−3

0 t) still contains a considerable error, as illustrated in Figure 2(a).
Consistent with our error analysis in (26), the numerically estimated errors also in-
crease as |XS(0) − Z̄S(s)| becomes larger considering the fact that Z̄S(s) ≈ 2 (Fig-
ure 2(b) and (c)).

The dependence of errors on
∣∣XS(0)− Z̄S(s)

∣∣ indicates that the error seen in
Figure 2 mainly stems from neglecting the species S in the approximating process.
Specifically, the initial condition of species S, XS(0), is ignored in the limiting total
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Fig. 2. The reduced model (23)–(24) does not accurately approximate the original model (2). (a)
The simulated trajectories of the original full model, XP (t), and the reduced model, N0ZP (N−3

0 t).
The colored ranges and histograms represent standard deviations of XP (t) and N0ZP (N−3

0 t) from
their means and their distributions at the steady state, respectively. Here, the initial condition is
the one used in Figure 1(b). In particular XS(0) = 0. (b) The relative differences of means and
standard deviations at the steady state (t = 5000s) between the full model and the reduced model
are numerically estimated for various values of XS(0). Here, XC(0) = 0, XE(0) = 40, XP (0) =
80−XS(0). (c) The simulated trajectories of the original full model, XP (t), and the reduced model,
N0ZP (N−3

0 t) when XS(0) = 20. Due to the larger value of XS(0), the error becomes larger than (a).
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conserved quantity (ZST
) of (18) due to the fact that the scaling exponent of S (αS)

is smaller than other scaling exponents in the conservation constraint (9). For the
same reason, Z̄S(s) is also neglected in the limit of the conservation constraint (20).
Since Z̄C(s) in (20) is used to derive (24), S is also neglected in the reduced model
(23)–(24). Therefore, as XS(0) takes a larger portion of XST

in (3), ignoring XS(0)
in deriving ZST

causes a larger error, as seen in Figure 2(b) and (c).
Note that we used one scaling exponent for species abundance of S (i.e., αS = 0)

for simplicity even when its order of magnitude of species abundance changes in time.
In such a case, αS is supposed to be adjusted throughout time as suggested in the
original multiscale approximation method [33, 34]. Specifically, when XS(0) = O(N0)
as in the case of Figure 2(c), it is suggested to use αS = 1 for the initial transient
period and αS = 0 in the later time. However, with such multiple choices of αS in
time, the approximation process becomes complex since different reduced models will
be derived in time and combining their numerical simulations is difficult.

3. Modified multiscale stochastic approximation method. In order to
correct the approximate errors seen in Figure 2, we introduce a modified conservation
law of the normalized variables:

ZNST
: =

1
N0

ZNS (t) + ZNC (t) + ZNP (t) =
1
N0

ZNS (0) + ZNC (0) + ZNP (0).(27)

Note that 1
NZ

N
S (t) in (9) is replaced by 1

N0
ZNS (t) to prevent approximating ZNS as 0

in the conservation law when N →∞. The limit of the newly derived total conserved
quantity among the normalized species is

ZST
:= lim

N→∞
ZNST

=
1
N0

(XS(0) +XC(0) +XP (0)) =
1
N0

XST
.

In contrast to ZST
in (18), ZST

does not depend on the fraction of XS(0) in XS(0) +
XC(0)+XP (0) as the total amount of the substrate, XST

, is fixed—ZST
is more natu-

ral conservation constant than ZST
. By substituting the new conservation constraint

into (11)–(14), we define a new family of stochastic processes:

ZNS (t) = ZNS (0) +Rt2
(
N2κ2Z

N
C

)
+Rt4

(
Nκ4Z

N
P

)
−Rt1

(
N2κ1Z

N
S Z

N
E

)
,(28)

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3Z

N
C

)
−N−1Rt4

(
Nκ4Z

N
P

)
,(29)

ZNC (t) = ZNST
− 1
N0

ZNS (t)− ZNP (t),(30)

ZNE (t) = ZNET
− ZNC (t) = ZNET

−ZNST
+

1
N0

ZNS (t) + ZNP (t).(31)

Though this new family of processes is different from the one in (11)–(14), we will
use the same notation (ZNi (t)) for simplicity. Since (28)–(31) is equivalent to the
original normalized system in (7) when N = N0, the new family of processes in-
cludes the original system. Thus, the limiting model of (28)–(31) can be used to
approximate the original system. To derive the limiting model, we divide (28) by
N2 and let N → ∞ to get

∫ t
0

(
κ2Z

N
C (s) + 1

N κ4Z
N
P (s)− κ1Z

N
S (s)ZNE (s)

)
ds → 0

in the same way as described in the previous section. As 1
N κ4Z

N
P (s) → 0, we get∫ t

0

(
κ2Z

N
C (s)− κ1Z

N
S (s)ZNE (s)

)
ds → 0. Substituting (30)–(31) in the equation,

we get ∫ t

0

(
κ2Z

N
C (s)− κ1N0

(
ZNST

− ZNC (s)− ZNP (s)
) (
ZNET

− ZNC (s)
))
ds→ 0(32)
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as N → ∞. Setting the integrand to zero in the limit, we get the following approx-
imation of the averaged value of fast species (Z̄C) with respect to the slow species
ZP := limN→∞ ZNP :

Z̄C(s) ≈
ZET

+ ZST
− ZP (s) + Kd

N0

2
(33)

−

√(
ZET

+ ZST
− ZP (s) + Kd

N0

)2
− 4ZET

(ZST
− ZP (s))

2
,

where Kd = κ2
κ1

(see Appendix A for a detailed derivation). Using (33) and the law
of large numbers in (15), and letting N →∞ in (29), we get a limiting model for the
slow species P :

ZP (t) ≈ ZP (0) +
∫ t

0

(
κ3Z̄C(s)− κ4ZP (s)

)
ds.(34)

We convert this deterministic limiting model to the stochastic process as in the pre-
vious section:

(35) ZP (t) = ZN0
P (0) +N0

−1Rt3 (N0κ3ZC)−N0
−1Rt4 (N0κ4ZP ) ,

where

ZC(t) =
ZET

+ ZST
−ZP (t) + Kd

N0

2
(36)

−

√(
ZET

+ ZST
−ZP (t) + Kd

N0

)2
− 4ZET

(ZST
−ZP (t))

2
.

Note that in this new approximation, ZC(t) is determined by ZP (t) differently from
the previous approximation in (23)–(24). We again use N0ZP (N−3

0 t) to approximate
XP (t) of the original model, which is accurate as seen in Figure 3(a). Furthermore,
the new approximation is accurate regardless of the initial condition of S (Figure 3(b)
and (c)) in contrast to the previous approximation (Figure 2).
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Fig. 3. The reduced model (35) accurately approximates the original model (2). (a) The
simulated trajectories of the original full model, XP (t), and the reduced model, N0ZP (N−3

0 t). The
colored ranges and histograms represent the standard deviations of XP (t) and N0ZP (N−3

0 t) from
their means and their distributions at the steady state, respectively. The initial condition used in (a)
is the same as the one used in Figure 2(a). In particular, XS(0) = 0. (b) The relative differences
of means and standard deviations at the steady state (t = 5000s) between the full model and the
reduced model are numerically estimated for various XS(0). (c) The simulated trajectories of the
original full model, XP (t), and the reduced model, N0ZP (N−3

0 t), when XS(0) = 20.
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To investigate the accuracy of the new approximation, we perform the error anal-
ysis and obtain the following:

XP (t) ≈ N0ZP (N−3
0 t) + E(N−3

0 t),(37)

E(t) =
∫ t

0

√
(κ3 + κ4) |E(s)| dW (s)−

∫ t

0
(κ3 + κ4) E(s) ds,(38)

where W is a standard Brownian motion (see Appendix D for detailed analysis). In
particular, since E(0) = 0 and the diffusion and drift terms are proportional to E(s),
it follows that E(t) = 0 and thus XP (t) = N0ZP (N−3

0 t) + o(1), which shows the
accuracy of the newly reduced model in (35)–(36). Note that XN = ZN + o

(
N−β

)
for some β > 0 means that Nβ

(
XN (t)− ZN (t)

)
⇒ 0 as N →∞, where ⇒ indicates

convergence in distribution (i.e., weak convergence).

4. Multiscale approximation for a genetic oscillatory system. In the pre-
vious section, we propose a modified multiscale approximation method that leads to
an accurate approximation for the stochastic system with a single steady state. In
this section, we apply the same idea to the transcriptional negative feedback loop
system, which generates oscillations (Figure 4(a)) [38, 39, 40, 42]. This system con-
sists of nine reactions as described in Table 4: the transcription of mRNA (M) occurs
proportional to active DNA (DA) and then M is translated into protein (P ), which
promotes the production of the repressor (R). The repressor reversibly binds with
DA to form repressed DNA complex (DR). Furthermore, M , P , and R degrade. This
model is described with the following set of stochastic equations:

XM (t) = XM (0) +Rt1(λ′1(X))−Rt2(λ′2(X)),

XP (t) = XP (0) +Rt3(λ′3(X))−Rt4(λ′4(X)),

XR(t) = XR(0) +Rt5(λ′5(X))−Rt6(λ′6(X))−Rt8(λ′8(X)) +Rt9(λ′9(X)),

XDR
(t) = XDR

(0) +Rt8(λ′8(X))−Rt9(λ′9(X))−Rt7(λ′7(X)),

XDA
(t) = XDA

(0)−Rt8(λ′8(X)) +Rt9(λ′9(X)) +Rt7(λ′7(X)).

(39)

Note that the total number of DNA (XDT
) is conserved:

(40) XDT
:= XDA

(t) +XDR
(t) = XDA

(0) +XDR
(0).
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Fig. 4. Transcriptional negative feedback loop. (a) The diagram of the biochemical reaction
network. (b) The simulations of ordinary differential equations, which are the large volume limit of
the stochastic system (39). When converting stochastic propensity functions to macroscopic reaction
rates, volume V = 1/nM is assumed. Here, M(0) = 180nM,P (0) = 210nM,R(0) = 20nM,DR(0) =
160nM , and DA(0) = 0nM . For N0 = 10, the scaling exponents (αi) for species abundance become
1 for R and DA and 2 for others.
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Table 4
Reactions and propensity functions. The 7th reaction describes the degradation of R bound to

DNA. κ′1 = 15.1745/hr, κ′8 = 200/hr, κ′9 = 50/hr, and other κ′i are 1/hr, which are adopted from
[40]. Thus, for N0 = 10, κ′1 = N1

0κ1, κ′i = N2
0κi for i = 8 and 9, and κ′i = N0

0κi for others so that
κi are of order 1. The scaling exponents (αi), 1 for R and DA, and 2 for others are used to derive
normalized species ZN0

i , which are of order 1. Hence, the normalized propensity functions (λi(ZN0 ))
are of order 1, and the orders of reaction rates can be easily derived from λ′i(Z

N0 )/λi(ZN0 ).

Reactions Original & normalized propensity functions

DA
κ′1−−→ DA +M λ′1(X) := κ′1XDA

= N2
0κ1Z

N0
DA

=: N2
0λ1(ZN0 )

M
κ′2−−→ φ λ′2(X) := κ′2XM = N2

0κ2Z
N0
M =: N2

0λ2(ZN0 )

M
κ′3−−→M + P λ′3(X) := κ′3XM = N2

0κ3Z
N0
M =: N2

0λ3(ZN0 )

P
κ′4−−→ φ λ′4(X) := κ′4XP = N2

0κ4Z
N0
P =: N2

0λ4(ZN0 )

P
κ′5−−→ P +R λ′5(X) := κ′5XP = N2

0κ5Z
N0
P =: N2

0λ5(ZN0 )

R
κ′6−−→ φ λ′6(X) := κ′6XR = N1

0κ6Z
N0
R =: N1

0λ6(ZN0 )

DR
κ′7−−→ DA λ′7(X) := κ′7XDR

= N2
0κ7Z

N0
DR

=: N2
0λ7(ZN0 )

DA +R
κ′8−−→ DR λ′8(X) := κ′8XDA

XR = N4
0κ8Z

N0
DA

ZN0
R =: N4

0λ8(ZN0 )

DR
κ′9−−→ DA +R λ′9(X) := κ′9XDR

= N4
0κ9Z

N0
DR

=: N4
0λ9(ZN0 )

To derive the normalized system of (39), we scaled reaction rate constants with
N0 = 10: κ′1 = N1

0κ1, κ′i = N2
0κi for i = 8 and 9 and κ′i = N0

0κi for others, as seen in
Table 4. According to the simulations of the deterministic system, which is the large
volume limit of (39), the scaling exponents of the molecular abundance (αi) can be
chosen as 1 for XDA

and XR and 2 for other species (Figure 4(b)). Using αi, we define
the normalized species abundance at the times of order N0

0 as ZN0
i (t) := Xi(t)/Nαi

0 .
Using the normalized species (ZN0

i (t)) and the normalized reaction rate constants
(κi), we derive the normalized propensity functions (λi(ZN0)), which are of order 1 as
described in Table 4. After replacing the original propensity functions in (39) by the
normalized ones, we replace N0 with N and obtain a family of vector-valued processes
{ZN (t)} satisfying

ZNM (t) = ZNM (0) +N−2(Rt1(N2λ1(ZN ))−Rt2(N2λ2(ZN ))),

ZNP (t) = ZNP (0) +N−2(Rt3(N2λ3(ZN ))−Rt4(N2λ4(ZN ))),

ZNR (t) = ZNR (0) +N−1(Rt5(N2λ5(ZN ))−Rt6(Nλ6(ZN ))−Rt8(N4λ8(ZN ))

+ Rt9(N4λ9(ZN ))),

ZNDR
(t) = ZNDR

(0) +N−2(Rt8(N4λ8(ZN ))−Rt9(N4λ9(ZN ))−Rt7(N2λ7(ZN ))),

ZNDA
(t) = ZNDA

(0) +N−1(−Rt8(N4λ8(ZN )) +Rt9(N4λ9(ZN )) +Rt7(N2λ7(ZN ))).

Initial conditions (ZNi (0)) are defined as done in the previous section (8). For all
species, the exponents of the maximum production and consumption rates are the
same (i.e., balance equations are satisfied), justifying our choice of the timescale.
Note that in the above system the normalized total DNA, ZNDA

(t)/N + ZNDR
(t), is

conserved. In the limit of this conserved relation, ZNDA
(t)/N will be neglected, and

thus all DNA is under repressed status in the limit. Thus, the reduced model with
the original multiscale approximation method reaches the steady state rather than
oscillates. This example again indicates that the limiting model derived using the
original method does not accurately approximate the full model when the system has
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a conservation among species with disparate scales of molecular abundances. Thus,
the modified conservation constraint as described in section 3 is used as

ZNDT
:= ZNDA

(t)/N0 + ZNDR
(t) = ZNDA

(0)/N0 + ZNDR
(0),

and the limit of ZNDT
as N →∞ is defined as

ZDT
:= lim

N→∞
ZNDT

= XDA
(0)/N2

0 +XDR
(0)/N2

0 = XDT
/N2

0 .

Using this modified conservation constraint, we define a new family of stochastic
processes, using the same notation (ZNi (t)) for simplicity:

ZNM (t) = ZNM (0) +N−2(Rt1(N2λ1(ZN ))−Rt2(N2λ2(ZN ))),(41)
ZNP (t) = ZNP (0) +N−2(Rt3(N2λ3(ZN ))−Rt4(N2λ4(ZN ))),(42)
ZNR (t) = ZNR (0) +N−1(Rt5(N2λ5(ZN ))−Rt6(Nλ6(ZN ))−Rt8(N4λ8(ZN ))(43)

+Rt9(N4λ9(ZN ))),
ZNDR

(t) = ZNDR
(0) +N−2(Rt8(N4λ8(ZN ))−Rt9(N4λ9(ZN ))(44)

−Rt7(N2λ7(ZN ))),
ZNDA

(t) = N0(ZNDT
− ZNDR

(t)).(45)

Because the maximum scaling exponents of the reaction rates of species R and DR are
greater than the scaling exponents of molecular abundance (αi), R and DR fluctuate
rapidly and are averaged out. To derive the averaged values of these fast variables, we
divide (44) by N2 and use the law of large numbers for Poisson process in (15) to get∫ t

0

(
κ8Z

N
DA

(u)ZNR (u)− κ9Z
N
DR

(u)
)
du

=
∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))ZNR (u)− κ9Z

N
DR

(u)
)
du→ 0

(46)

as N →∞. Note that (46) consists of only the fast variables ZR and ZDR
, and thus

we cannot use (46) to derive the limiting average of the fast variables with respect
to the slow variables. To circumvent this problem, we introduce the auxiliary species
T = R+DR, as suggested by the original multiscale approximation method [33, 34].
Since the abundance of T has the same order as DR, we get

(47) ZNT (t) := (XR(t) +XDR
(t))/N2 = N−1ZNR (t) + ZNDR

(t),

so that ZNT (t) is of order 1. We now derive the equation for ZNT (t) using (43)–(44):

ZNT (t) = ZNT (0) +N−2(Rt5(N2λ5(ZN ))−Rt10(N2λ10(ZN ))),(48)

R10(N2λ10(ZN )) := Y6

(∫ t

0
Nκ6Z

N
R (u)du

)
+ Y7

(∫ t

0
N2κ7Z

N
DR

(u)du
)

≡ Y10

(∫ t

0

(
Nκ6Z

N
R (u) +N2κ7Z

N
DR

(u)
)
du

)
= Y10

(∫ t

0
N2κ10Z

N
T (u)du

)
.

Note that κ6 = κ7 = 1 is used to define κ10 := κ6 = κ7, and thus two reaction terms
can be combined using the superposition principle of Poisson processes [15]. The pro-
cess for ZNT (t) satisfies the balance equation, and ZNT (t) is a slow variable because
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the maximum scaling exponent of the reaction rates and the scaling exponent for the
species abundance are equal as 2. We substitute (47) into (46) and get

(49)
∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))N(ZNT (u)− ZNDR

(u))− κ9Z
N
DR

(u)
)
du→ 0

as N → ∞. Setting the integrand to zero in the limit, we derive the averaged
value of the fast species (Z̄DR

) in terms of the slow species in the limit (ZT (t) :=
limN→∞ ZNT (t)):

(50) Z̄DR
(t) = ZT (t),

which is equivalent to the limit of (47). Equation (50) with (45) yields the averaged
value of the fast species (Z̄DA

)

(51) Z̄DA
(t) = N0(ZDT

− ZT (t)).

Using Z̄DA
(t) and the law of large number for the Poisson process, we get the limiting

model for the slow species. Because the limiting model is deterministic, we convert it
to the stochastic system similarly as we did in the previous section:

ZM (t) = ZN0
M (0) +N−2

0

(
Rt1(N2

0κ1Z̄DA
)−Rt2(N2

0κ2ZM )
)
,(52)

ZP (t) = ZN0
P (0) +N−2

0

(
Rt3(N2

0κ3ZM )−Rt4(N2
0κ4ZP )

)
,(53)

ZT (t) = ZN0
T (0) +N−2

0

(
Rt5(N2

0κ5ZP )−Rt10(N2
0κ10ZT )

)
,(54)

Z̄DA
(t) = N0(ZDT

− ZT (t)).(55)

Note that Z̄DA
(t) is derived from (51). In Figure 5, we used ZM (t) to approximate

XM (t) as XM (t) ≈ N2
0 ZM (t), but as seen from the plots, this approximation is inac-

curate. In particular, the reduced model does not generate oscillations with a specific
frequency in contrast to the full model (Figure 5(b))

We wondered whether the inaccuracy of the reduced model (52)–(55) stems from
the fact that we simply fixed scaling exponents (αi = 1) for R and DA throughout
the oscillation as they change between N0

0 and N0 (Figure 4). That is, as αi of R

0 10 20
0

200

400

Time (h)!

X M
!

(a)! (b)!

X M
(ω

)!

Norm. freq. (ω)!
0 1 2

0

300

600
Full         Reduced!

Fig. 5. The reduced model (52)–(55) does not accurately approximate the original full model
(39). (a) The simulated trajectories of the original full model, XM (t), and the reduced model,
N2

0 ZM (t). The initial condition is the one used in Figure 4(b). (b) Fourier transforms of stochastic
trajectories with 104 cycles of the full and reduced models show a large difference.
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and DA change throughout the oscillation, it might not be appropriate to fix the
order of λ′8 = κ′8XDA

XR as N4
0 in Table 4, which is used to derive the equation for

the average of fast species (49). However, we find that although the orders of XDA

and XR change, κ′8XDA
XR = O(N4

0 ) throughout the oscillation. Thus our choice of
fixed scaling exponents (αi) for R and DA is not the reason for the inaccuracy of the
average of fast species (50) and thus the reduced model seen in Figure 5.

Instead, we find that the inaccurate approximation of the averaged value of the
fast species in (55) is due to the fact that the slow auxiliary species (T ) consists of fast
species with disparate abundance scales and thus a fast species (R) with low scale of
abundance is neglected in the limit. Specifically, Z̄DR

(t) = ZT (t) in (50) is equivalent
to approximating N−1ZNR (t) by 0 in ZNT (t) = ZNDR

(t) +N−1ZNR (t) as N →∞. Since
Z̄DR

(t) = ZT (t) is used to derive Z̄DA
(t) in (51) and hence ZDA

(t) in (55), R is also
neglected in the reduced system given in (52)–(55), which leads to apparent errors
seen in (Figure 5).

To resolve this problem, we adopt an idea similar to the one used in the previous
section because a slow variable, ZNT (t), is considered as a constant on a fast timescale
and thus (47) can be considered as a conservation law on a fast timescale. We redefine
ZNT as

(56) ZNT (t) := ZNDR
(t) +N−1

0 ZNR (t),

which prevents the elimination of ZNR as N →∞. Though (56) is different from (47),
we keep using the notation ZNT (t) for simplicity. With this new definition, we get the
modified relation of (49):

(57)
∫ t

0

(
κ8N0(ZNDT

− ZNDR
(u))N0(ZNT (u)− ZNDR

(u))− κ9Z
N
DR

(u)
)
du→ 0

as N → ∞. Setting the integrand to zero in the limit, we get the approximation for
the averaged limiting value of ZDR

as

Z̄DR
(t) ≈

ZDT
+ Kd

N2
0

+ ZT (t)−
√

(Kd

N2
0
− ZDT

+ ZT (t))2 + 4ZDT

Kd

N2
0

2
,

where Kd = κ9/κ8. Using (45), we get

Z̄DA
(t) ≈ N0

ZDT
− Kd

N2
0
− ZT (t) +

√
(Kd

N2
0
− ZDT

+ ZT (t))2 + 4ZDT

Kd

N2
0

2
.

By using the approximate averaged value (Z̄DA
) and the law of large numbers, we

obtain the modified liming model for the slow species. Since the limiting model is
deterministic, as before, we convert it to the following stochastic system:

ZM (t) = ZN0
M (0) +N−2

0

(
Rt1(N2

0κ1Z̄DA
)−Rt2(N2

0κ2ZM )
)
,(58)

ZP (t) = ZN0
P (0) +N−2

0

(
Rt3(N2

0κ3ZM )−Rt4(N2
0κ4ZP )

)
,(59)

ZT (t) = ZN0
T (0) +N−2

0

(
Rt5(N2

0κ5ZP )−Rt10(N2
0κ10ZT )

)
,(60)

Z̄DA
(t) = N0

ZDT
− Kd

N2
0
−ZT (t) +

√
(Kd

N2
0
− ZDT

+ ZT (t))2 − 4ZDT

Kd

N2
0

2
.(61)

Note that this newly derived reduced system is the same as the one in (52)–(55)
except for (61). We used ZM (t) to approximate XM (t) as XM (t) ≈ N2

0ZM (t). As
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Time (h)!

X M
!

(a)! (b)!

0 10 20
0

200

400

0 1 2
0

300
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X M
(ω
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Norm. freq. (ω)!

Full         Reduced!

Fig. 6. The reduced model (58)–(61) accurately approximates the original full model (39). (a)
The simulated trajectories of the original full model, XM (t), and the reduced model, N2

0ZM (t). The
initial condition is the one used in Figure 4(b). (b) Fourier transforms of stochastic trajectories
with 104 cycles of the full and reduced models are consistent.

seen from the simulation (Figure 6), the reduced model accurately approximates the
original full model.

We can often obtain slow auxiliary variables by combining fast variables because
fast reactions could cancel each other, as seen in (48). These newly derived slow
variables play a critical role in deriving the reduced models in the multiscale stochastic
approximation method [11, 16, 34]. If the slow normalized auxiliary species are derived
as proposed in the original method (47), the constituent fast species of the auxiliary
species are ignored in the limit if their scales of abundances (αi) are smaller than
those of other constituent fast species. This leads to considerable errors, as seen in
Figure 5. On the other hand, our modification of the auxiliary variables given in (56)
prevents the fast species with small abundance being neglected in the limit and leads
to more accurate approximation as shown in Figure 6.

5. Conclusion. Cells consist of diverse species whose abundances are on dis-
parate scales. For instance, the concentrations of metabolites vary more than 106

fold in E. coli : the concentration of glutamate and adenosine are about 102µM and
10−4µM , respectively [7]. Thus, biochemical reaction networks often have conserva-
tion laws involving species with disparate abundance scales. Furthermore, the com-
bination of fast species with disparate abundance scales can also form virtual slow
auxiliary species that evolve slowly due to the cancellation of the fast reactions. In
such cases, with the original multiscale approximation method, the constituent species
with the low abundance are ignored in the conservation constraint or in the auxiliary
species of limiting models as shown in (18) or (50). Therefore, the original multiscale
approximation method [5, 34] can lead to potential errors in the limiting models, as
seen in our examples (Figures 2 and 5). To address this problem, we proposed here to
replace the scaling parameter N by the fixed value N0 in the conservation constraints
and auxiliary variables as we did in (27) and (56). Using these modified conserva-
tion constraints (or auxiliary variables), we redefined the family of the normalized
stochastic processes in such a way that its limit provides accurate approximations
for the full stochastic systems of the Michaelis–Menten kinetics (Figure 3) and the
genetic oscillator (Figure 6). This indicates that our modified method is applicable
for a broader class of multiscale stochastic biochemical reaction networks than the
original method.
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1392 J. K. KIM, G. A. REMPALA, AND H.-W. KANG

When the abundance of species evolves across multiple scales over time, the orig-
inal multiscale approximation method may require time-dependent scaling exponent
αi and thus lead to different reduced models over time [33]. In this case, the approx-
imation process becomes complex as it requires combining different reduced models
over time. On the other hand, our modified multiscale approximation method us-
ing the fixed αi produces an accurate approximation in our example although some
species abundances change over time (Figure 3(c)). It would be interesting future
work to examine whether our modified method is applicable to general systems where
the scales of species abundance change over time.

Interestingly, the reduced models obtained using our methods coincide with those
derived with the stochastic total QSSA approach [6, 40, 41, 49]. Therefore, the error
analysis used in our work also can be applied to validate the accuracy of the stochastic
total QSSA, which has been until now investigated mostly numerically. Another
interesting application of our work can be the extension of our method to approximate
stochastic reaction-diffusion systems [17, 30, 31, 36, 52].

Appendix A. Derivation of the spatial averages of fast species in sec-
tions 2 and 3. From the original full model described in (11)–(12), we derive a
scaled generator of z = (zS , zP ) as

ANf(z) = N2κ1

(
ZNET

− ZNST
+

1
N
zS + zP

)
zS [f (z − eS)− f(z)](62)

+N2κ2

(
ZNST
− 1
N
zS − zP

)
[f (z + eS)− f(z)]

+Nκ3

(
ZNST
− 1
N
zS − zP

)[
f

(
z +

1
N
eP

)
− f(z)

]
+Nκ4zP

[
f

(
z + eS −

1
N
eP

)
− f(z)

]
.

Define an occupational random measure of ZNS as

ΓN (D × [0, t]) =
∫ t

0
1D
(
ZNS (s)

)
ds

in the space of measures ν on Z+ × [0,∞) such that ν(Z+ × [0, t]) = t and Z+ is the
set of natural numbers and zero. Denote the space of measures as L ≡ L(Z+).

Setting f(z) = zS in (62), we define a martingale

MN (t) = ZNS (t)− ZNS (0)(63)

−
∫

Z+×[0,t]
N2

[
κ2

(
ZNST
− 1
N
zS − ZNP (s)

)
+

1
N
κ4Z

N
P (s)

− κ1zS

(
ZNET

− ZNST
+

1
N
zS + ZNP (s)

)]
ΓN (dzS × ds) .

{ZNP } and {ΓN} are relatively compact in DR+([0,∞)) and L, respectively, where
DR+([0,∞)) is the space of cadlag functions with R+ values and L is the space of
measures (see Appendix B). Therefore, we can set (ZP ,Γ) to be a limit point of
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{(ZNP ,ΓN )} in DR+([0,∞))× L. Using Lemma 1.5 in [46],∫
Z+×[0,t]

[
κ2

(
ZNST
− 1
N
zS − ZNP (s)

)
+

1
N
κ4Z

N
P (s)

−κ1zS

(
ZNET

− ZNST
+

1
N
zS + ZNP (s)

)]
ΓN (dzS × ds)

converges in distribution to∫
Z+×[0,t]

[κ2 (ZST
− ZP (s))− κ1zS (ZET

− ZST
+ ZP (s))] Γ (dzS × ds) .(64)

After dividing (63) by N2 and and letting N go to infinity, the above term (64)
becomes zero for all t > 0. Using Lemma 1.4 in [46], there exists µ(·) such that
Γ(dzS × ds) = µZP (s)(dzS) ds, and we get∫ t

0

∫
Z+

[κ2 (ZST
− ZP (s))− κ1zS (ZET

− ZST
+ ZP (s))] µZP (s)(dzS) ds = 0(65)

with probability one.
Then, the average of fast species (Z̄S) is expressed in terms of the slow species

(ZP ) as

Z̄S(s) ≡
∫

Z+
zS µZP (s)(dzS) =

κ2 (ZST
− ZP (s))

κ1 (ZET
− ZST

+ ZP (s))
,(66)

which is given in the main text (17). Note that µZP (s) is a local-averaging distribution
and the Poisson distribution with mean Z̄S(s) because the limit of ANf(z)/N2 in (62)
is the infinitesimal generator of the Poisson process. For more details of conditions
for averaging, please see section 5 in [34] and [5, 35].

Next, to derive the approximate averaged value of the fast species (33) of section 3,
we substitute 1

N zS to 1
N0
zS and ZNST

to ZNST
in (63) and construct a new martingale

corresponding to ZNS in (28),

MN (t) = ZNS (t)− ZNS (0)−
∫

Z+×[0,t]
N2

[
κ2

(
ZNST

− 1
N0

zS − ZNP (s)
)

(67)

+
1
N
κ4Z

N
P (s)− κ1zS

(
ZNET

−ZNST
+

1
N0

zS + ZNP (s)
)]

ΓN (dzS × ds) ,

where ΓN is an occupation measure of ZNS .
{
ZNP
}

and
{

ΓN
}

are relatively compact,
since ZNP and ZNS are bounded by ZNST

≤ ZST
and N0ZNST

≤ N0ZST
as seen in (27),

respectively. Dividing (67) by N2 and taking a limit, we get∫ t

0

∫
Z+

[
κ2

(
ZST

− 1
N0

zS − ZP (s)
)

−κ1zS

(
ZET

−ZST
+

1
N0

zS + ZP (s)
)]

µZP (s)(dzS) ds = 0

as we derived (65). Differentiating with respect to t and replacing the time variable
by s, the rewritten equation becomes
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1394 J. K. KIM, G. A. REMPALA, AND H.-W. KANG∫
Z+

[
1
N0

z2
S +

(
ZET

−ZST
+ ZP (s)+

Kd

N0

)
zS−Kd (ZST

−ZP (s))
]
µZP (s)(dzS) = 0,

where Kd = κ2
κ1

.
We derive an approximate averaged value for ZNS in the limit,∫

Z+
zS µZP (s)(dzS) ≈ −

ZET
−ZST

+ ZP (s) + Kd

N0

2/N0

+

√(
ZET

−ZST
+ ZP (s) + Kd

N0

)2
+ 4Kd

N0
(ZST

− ZP (s))

2/N0
,

by assuming
∫

Z+ z
2
S µZP (s)(dzS) ≈ (

∫
Z+ zS µZP (s)(dzS))2 in the limit. In Appendix

D, we will show that this assumption does not cause any error up to the order of
magnitude we are interest in.

Appendix B. Relative compactness of {ZN
P } and {ΓN}. Here, we will

show that {ZNP } and {ΓN} in Appendix A are relatively compact in DR+([0,∞)) and
L, respectively, where DR+([0,∞)) is the space of cadlag functions with R+ values
and L is the space of measures. Since ZNP (t) ≤ ZNST

and ZNST
→ ZST

as N → ∞,
ZNP (t) is bounded for all t ∈ [0,∞), and thus {ZNP (t)} is relatively compact. We will
show that for t ∈ [0,∞) and for fixed δ > 0, there exists r such that

sup
N
P

(∫ t

0
1[r,∞)

(
ZNS (s)

)
ds > δ

)
< δ.

Since
∫ t
0 1[r,∞)

(
ZNS (s)

)
ds ≤

∫ t
0
ZN

S (s)
r ds, we will show that we can set P (

∫ t
0
ZN

S (s)
r ds

> δ) small enough by choosing an appropriate value for r. We have

P

(∫ t

0

ZNS (s)
r

ds > δ

)
≤ P

(
inf

t∈[0,∞)
ZNE (t) ≤ η

)
+ P

(∫ t

0
ZNS (s)ZNE (s) ds > rδη

)
≤ P

(
inf

t∈[0,∞)
ZNE (t) ≤ η

)
+

1
rδη

E

[∫ t

0
ZNS (s)ZNE (s) ds

]
.

If ZNE (0) 6= 0 and E[
∫ t
0 Z

N
S (s)ZNE (s) ds] < ∞, we can set η small enough and r large

enough so that both probabilities on the right-hand side become small. Then ZNS (t)
is stochastically bounded for t ∈ [0,∞), and by Lemma 1.1 in [46] {ΓN} is relatively
compact. Now, we will show that E[

∫ t
0 Z

N
S (s)ZNE (s) ds] <∞. Taking the expectation

on both sides of the equation for ZNC (t) in (7) and rearranging terms, we have

E

[∫ t

0
κ1Z

N
S (s)ZNE (s) ds

]
=

1
N
E
[
ZNC (t)

]
− 1
N
E
[
ZNC (0)

]
+ E

[∫ t

0
κ2Z

N
C (s) ds

]
+

1
N
E

[∫ t

0
κ3Z

N
C (s) ds

]
.

The right-hand side is bounded since for all t, ZNC (t) ≤ ZNET
, and this converges to

ZET
< ∞ as N → ∞. Note that we showed relative compactness of {ΓN} when

ZNE (0) 6= 0. If ZNE (0) = 0, we need additional assumption that ZNS (t) is stochastically
bounded for all t ∈ [0,∞).
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Appendix C. Error analysis for ZP in section 2. To analyze the error of
the process ZP of (23) in approximating ZN0

P of the full model in (12) with N = N0,
we use the technique developed in [2]. To this end, we derive a family of process ZNP
by replacing N0 in (23) with the parameter N as

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3ZNC

)
−N−1Rt4

(
Nκ4ZNP

)
,(68)

where

ZNC (t) = ZNST
− ZNP (t).(69)

We define ZNST
≡ ZNC (0) + ZNP (0) so that ZN0

ST
= ZST

. In this way, (68)–(69) with
N = N0 become equivalent to the approximate model in (23)–(24). Furthermore,
ZNC (t)→ Z̄C(t) as N →∞ so that ZNP in (68) and ZNP in (12) of the full model have
the same limit ZP in (21). Since ZNP (t)−ZNP (t)→ 0, we define an error between ZNP
and ZNP as

EN (t) ≡ N
(
ZNP (t)− ZNP (t)

)
(70)

to get the asymptotic behavior of the error between ZNP and ZNP of order N−1. To
find an approximate value of EN0(t), we derive a limiting behavior of EN as N →∞.
We rewrite the reaction terms for ZNP in (12) as the following process, which has the
same probability distribution with that in (12):

ZNP (t) = ZNP (0) +
1
N
Y3,1

(∫ t

0
Nκ3Z

N
C (s) ∧Nκ3ZNC (s) ds

)
(71)

+
1
N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Y4,1

(∫ t

0
Nκ4Z

N
P (s) ∧Nκ4ZNP (s) ds

)
− 1
N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
,

where A ∧ B ≡ min (A,B). Similarly, we rewrite the equation for ZNP in (68) as the
following process:

ZNP (t) = ZNP (0) +
1
N
Y3,1

(∫ t

0
Nκ3Z

N
C (s) ∧Nκ3ZNC (s) ds

)
(72)

+
1
N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Y4,1

(∫ t

0
Nκ4Z

N
P (s) ∧Nκ4ZNP (s) ds

)
− 1
N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
.

Subtracting (72) from (71),
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ZNP (t)− ZNP (t) =
1
N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
(73)

− 1
N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
+

1
N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
.

Taking the reaction terms in (73) and subtracting their propensity functions, we
define the following martingale:

MN (t) =
1
N
Ỹ3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Ỹ3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Ỹ4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
+

1
N
Ỹ4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
,

where Ỹ (u) = Y (u)− u. A quadratic variation of the martingale is (cf. [35])

[
MN

]
t

=
1
N2Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
+

1
N2Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
+

1
N2Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
+

1
N2Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
.

Define a function for ZNC in (13) and ZNC in (69) as

FN (z) = ZNST
− 1
N
zS − zP ,

F̄N (zP ) = ZNST
− zP

so that FN
(
ZN (s)

)
= ZNC (s) and F̄N

(
ZNP (s)

)
= ZNC (s). As N → ∞,

[
MN

]
t

is
asymptotic to

1
N

∫ t

0
κ3
∣∣ZNC (s)− ZNC (s)

∣∣ ds+
1
N

∫ t

0
κ4
∣∣ZNP (s)− ZNP (s)

∣∣ ds
=

1
N

∫ t

0
κ3
∣∣[FN (ZN (s)

)
− F̄N

(
ZNP (s)

)]
+
[
F̄N

(
ZNP (s)

)
− F̄N

(
ZNP (s)

)]∣∣ ds
+

1
N

∫ t

0
κ4
∣∣ZNP (s)− ZNP (s)

∣∣ ds,D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

10
.7

6.
10

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC REDUCTION WITH MULTISCALE CONSERVATIONS 1397

where we use the fact that (A−A ∧B) + (B −A ∧B) = |A−B|. Then as N →∞,[
N ·MN

]
t

is asymptotic to∫ t

0
κ3

∣∣∣∣N [FN (ZN (s)
)
− F̄N

(
ZNP (s)

)]
+
dF̄N

(
ZNP (s)

)
dZNP (s)

EN (s)
∣∣∣∣ ds(74)

+
∫ t

0
κ4
∣∣EN (s)

∣∣ ds.
Subtracting and adding the propensity functions and using the fact that

(A−A ∧B)− (B −A ∧B) = (A−B), (73) can be rewritten as

ZNP (t)− ZNP (t) = MN (t) +
∫ t

0

[
κ3
(
ZNC (s)− ZNC (s)

)
− κ4

(
ZNP (s)− ZNP (s)

)]
ds(75)

= MN (t) +
∫ t

0
κ3
(
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

))
ds

+
∫ t

0
κ3
(
F̄N

(
ZNP (s)

)
− F̄N

(
ZNP (s)

))
ds

−
∫ t

0
κ4
(
ZNP (s)− ZNP (s)

)
ds.

Multiplying (75) by N , we get

EN (t) ≈ N ·MN (t)(76)

+
∫ t

0
κ3

{
N
[
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

)]
+
dF̄N

(
ZNP (s)

)
dZNP (s)

EN (s)

}
ds

−
∫ t

0
κ4EN (s) ds.

Assuming that EN ⇒ E as N →∞, where ⇒ implies convergence in distribution
(or weak convergence), we get

N
[
FN

(
ZN (s)

)
− F̄N

(
ZNP (s)

)]
(77)

= N

[
ZNST
− 1
N
ZNS (s)− ZNP (s)− ZNST

+ ZNP (s)
]

= N
[
XS(0)/N − ZNS (s)/N

]
−→ XS(0)− Z̄S(s)

and

dF̄N
(
ZNP (s)

)
dZNP (s)

EN (s) −→ −E(s).(78)

Substituting (77) and (78) into (74) and applying the martingale central limit theorem,
N ·MN ⇒M as N →∞, where M is a Gaussian process with its quadratic variation

[M]t =
∫ t

0

{
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)|
}
ds.

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

10
.7

6.
10

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1398 J. K. KIM, G. A. REMPALA, AND H.-W. KANG

Therefore, as N →∞, (76) converges in distribution to

E(t) =
∫ t

0

√
κ3
∣∣XS(0)− Z̄S(s)− E(s)

∣∣+ κ4 |E(s)| dW (s)

+
∫ t

0

{
κ3
(
XS(0)− Z̄S(s)− E(s)

)
− κ4E(s)

}
ds,

where W is a standard Brownian motion and thus E(t) = O(1). Approximating
EN0(t) ≈ E(t) as suggested in [35] and using (70), we obtain

XP (t) ≈ N0ZP (N−3
0 t) + E(N−3

0 t),

which indicates that XP (t) = N0ZP (N−3
0 t) +O(1).

Appendix D. Error analysis for ZP in section 3. We again use the
technique developed in [2] to derive the error between ZP of the approximate model
(35) and ZN0

P of the full model (12) with N = N0. To this end, we derive a family of
the processes ZNP by replacing N0 of ZP in (35) by a parameter N as

ZNP (t) = ZNP (0) +N−1Rt3
(
Nκ3ZNC

)
−N−1Rt4

(
Nκ4ZNP

)
,(79)

where

ZNC (s) =
ZNET

+ ZNST
−ZNP (s) + Kd

N

2

−

√(
ZNET

+ ZNST
−ZNP (s) + Kd

N

)2 − 4ZNET

(
ZNST
−ZNP (s)

)
2

.

Note that ZN0
C (t) = ZC(t) since ZN0

ST
= ZST

. Then, ZNP (t) of (79) when N = N0

becomes equivalent to ZP of (35). That is, the family of process (ZNP ) includes the
approximate process ZP of (35). Since ZNC (t)→ Z̄C(t) in (20) as N →∞, ZNP (t) and
ZNP (t) of the full model in (12) converge to the same limit ZP (t) in (21) as N →∞.
Since ZNP −ZNP → 0 as N →∞, we define an error as

EN (t) ≡ N
(
ZNP (t)−ZNP (t)

)
to get the asymptotic behavior of the error of order 1

N in ZNP (t)−ZNP (t).
To find an approximate of EN0(t), we investigate an asymptotic behavior of EN

as N → ∞. As we derived (73), we derive the following equation after replacing ZNP
and ZNC by ZNP and ZNC in (73):

ZNP (t)−ZNP (t) =
1
N
Y3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
(80)

− 1
N
Y3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Y4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
+

1
N
Y4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
.
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Using reaction terms in (80) and subtracting them by their propensity functions,
define a martingale as

MN (t) ≡ 1
N
Ỹ3,2

(∫ t

0

(
Nκ3Z

N
C (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Ỹ3,3

(∫ t

0

(
Nκ3ZNC (s)−Nκ3Z

N
C (s) ∧Nκ3ZNC (s)

)
ds

)
− 1
N
Ỹ4,2

(∫ t

0

(
Nκ4Z

N
P (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
+

1
N
Ỹ4,3

(∫ t

0

(
Nκ4ZNP (s)−Nκ4Z

N
P (s) ∧Nκ4ZNP (s)

)
ds

)
,

where Ỹ (u) = Y (u)− u. Define

F̃N (zP ) ≡ ZNET
+ ZNST

− zP + Kd

N

2

−

√(
ZNET

+ ZNST
− zP + Kd

N

)2 − 4ZNET

(
ZNST
− zP

)
2

,

so that F̃N
(
ZNP (s)

)
= ZNC (s). As we get (74),

[
N · MN

]
t

is asymptotic to∫ t

0
κ3

∣∣∣∣∣N [FN (ZN (s)
)
− F̃N

(
ZNP (s)

)]
+
dF̃N

(
ZNP (s)

)
dZNP (s)

EN (s)

∣∣∣∣∣ ds+
∫ t

0
κ4
∣∣EN (s)

∣∣ ds.
Next, we show that∫ t

0
N
[
FN

(
ZN (s)

)
− F̃N

(
ZNP (s)

)]
ds −→ 0(81)

as N →∞. Denoting

AN (zP ) = ZNET
− ZNST

+ zP +
Kd

N
,(82)

BN (zP ) = ZNST
− zP ,(83)

we have

N
(
FN (z)− F̃N (zP )

)
= −zS −N

AN (zP )−
√
AN (zP )2 + 4

NKdBN (zP )

2

(84)

=
[
−zS +

KdB
N (zP )

AN (zP )

]

+

−KdB
N (zP )

AN (zP )
+

2KdB
N (zP )

AN (zP ) +
√
AN (zP )2 + 4

NKdBN (zP )


=
[
−zS +

KdB
N (zP )

AN (zP )

]
+
KdB

N (zP )
AN (zP )

·
− 4
N
KdB

N (zP )
AN (zP )2(

1 +
√

1 + 4
N
KdBN (zP )
AN (zP )2

)2 .D
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The second term on the right is of order 1
N in (84). The integral of the first term in

(84) becomes ∫ t

0

[
−ZNS (s) +

KdB
N
(
ZNP (s)

)
AN

(
ZNP (s)

) ]
ds

=
∫ t

0

[
−ZNS (s) +

κ2
(
ZNST
− ZNP (s)

)
κ1
(
ZNET

− ZNST
+ ZNP (s) + Kd

N

)] ds,
and this converges to 0 as N →∞ using (65) and (66), which shows (81).

Using F̃N (zP )→ F (zP ) ≡ ZST
− zP and ZNP → ZP ,

dF̃N
(
ZNP (s)

)
dZNP (s)

−→ dF (ZP (s))
dZP (s)

= −1(85)

as N →∞. Therefore, using the martingale central limit theorem, N · MN ⇒M as
N →∞, which is a Gaussian process with its quadratic variation

[M]t =
∫ t

0
(κ3 + κ4) |E(s)| ds,

where EN (s) ⇒ E(s) as N → ∞. As we derive (76), we can derive an equation for
EN (t) by replacing EN , MN , F̄N , and ZNP with EN , MN , F̃N , and ZNP , respectively.
Then, EN is asymptotically equal to

EN (t) ≈
∫ t

0
κ3

{
N
[
FN

(
ZN (s)

)
− F̃N

(
ZNP (s)

)]
+
dF̃N

(
ZNP (s)

)
dZNP (s)

EN (s)

}
ds(86)

−
∫ t

0
κ4EN (s) ds+N · MN (t).

Using (81) and (85), (86) converges in distribution to

E(t) =
∫ t

0

√
(κ3 + κ4) |E(s)| dW (s)−

∫ t

0
(κ3 + κ4) E(s) ds

as N →∞ where W is a standard Brownian motion. Again, we approximate EN0(t) ≈
E(t) as suggested in [35] and thus we get

XP (t) ≈ N0ZP (N−3
0 t) + E(N−3

0 t).

Since E(0) = 0 and diffusion and drift terms are proportional to E(s), E(t) = 0, which
indicates that XP (t) = N0ZP (N−3

0 t) + o(1).
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